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Structure-Activity Correlations for
Interactions of Bicyclophosphorus Esters
and Some Polychlorocycloalkane and
Pyrethroid Insecticides with the Brain-
Specific t-Butylbicyclophosphorothionate
Receptor
by John E. Casida* and Lowell J. Lawrence*t

[3S]t-Butylbicyclophosphorothionate or [35S]TBPS is an improved radioligand for the picrotoxinin bind-
ing site in rat brain synaptic membranes. The toxic isomers of the hexachlorocyclohexanes, polychloro-
bornanes, and chlorinated cyclodienes displace [35S]TBPS with a stereospecificity and potency generally
correlated with their mammalian toxicity. In a few cases this correlation is improved by correction for
metabolic activation or detoxification on using a coupled brain receptor/liver microsomal oxidase system.
The a-cyano-3-phenoxybenzyl pyrethroids, although less potent, inhibit ['3S]TBPS binding in a stereo-
specific manner correlated with their toxicity. Scatchard analyses indicate that these three classes of
polychlorocycloalkane insecticides act at the TBPS binding site within the y-aminobutyric acid (GABA)
receptor-ionophore complex whereas the a-cyano pyrethroids interact with a closely associated site. These
insecticides and TBPS analogs may serve as useful probes further to elucidate the topography of the TBPS
binding site and its relationship to the chloride channel.

Introduction
The safe and effective use of bioactive chemicals re-

quires adequate knowledge of their structure-activity
relationships, metabolic activation or detoxification, and
mode of action at an organismal and enzyme or receptor
level, in both target and nontarget species. This ideal
has been largely achieved with the organophosphorus
and methylcarbamate insecticides which inhibit acetyl-
cholinesterase at synapses and with some of the first
chlorinated hydrocarbon and pyrethroid insecticides,
such as DDT and allethrin, which disrupt sodium chan-
nels on neuron or muscle cell membranes. Our recent
studies indicate that bicyclophosphorus esters (BPs) and
some polychlorocycloalkane and newer pyrethroid in-
secticides act within the -y-aminobutyric acid (GABA)
receptor-ionophore complex and that this coupled sys-
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tem and its inhibitors are conveniently examined with
a simple radioligand assay using [35S]t-butylbicyclo-
phosphorothionate ([5S]TBPS) and rat brain synaptic
membranes.

This review considers the development and proper-
ties of [35S]TBPS as an improved radioligand for the
picrotoxinin (PTX) receptor within the GABA receptor-
ionophore complex and the interaction of diverse insec-
ticides and other neuroactive agents with the TBPS
binding site.

Picrotoxinin (PTX) and t-Butyl-
bicyclophosphorothionate (TBPS)
PTX is a polycyclic epoxylactone (Fig. 1) from seeds

of Anamirta cocculus L. It inhibits GABA-stimulated
chloride permeability by acting as a noncompetitive
GABA antagonist (1-3). Structure-toxicity relation-
ships for PTX [mouse intraperitoneal (IP) LD50 = 9.0
mg/kg (4)] and its analogs have been used to define
critical features for convulsant action (5) and to char-
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FIGURE 1. Structures of picrotoxinin, [3H]dihydropicrotoxinin, and

[35S]t-butylbicyclophosphorothionate.

acterize the topography of the chloride channel (3). The
PTX receptor has been extensively studied with the
radioligand analog ac-[8, 10-3H]dihydropicrotoxinin
([3H]DHP) (Fig. 1) (6-8) (NET-606 of New England
Nuclear Corp., Boston, MA). [3H]DHP is less than sat-
isfactory as a radioligand because of its very low affinity
and almost unacceptably high nonspecific binding (6-8).
Many types of convulsants inhibit [3H]DHP binding to
rat brain synaptic membranes but unfortunately with
the BPs there is a relatively poor correlation between
inhibitory potency and toxicity (8).
The BPs are xenobiotics, and certain analogs such as

TBPS (Fig. 1) are potent convulsants (4,9,10). Elec-
tronic reactions such as phosphorylation and alkylation
are probably not involved in their primary mode of ac-
tion (10,11). Findings on the relation of structure to
mammalian toxicity may be directly applicable to neu-
roreceptor potency since the BPs act quickly relative
to their rate of detoxification (9,12). Optimal IP mouse
toxicity requires a completely symmetrical cage (9), im-
plying a channel- or pore-type receptor(s) (4,13). It also
depends on the hydrophobicity and bulkiness or branch-
ing of the extracyclic R substituent (Fig. 2), possibly
due to steric interaction with the neuroreceptor which
is hydrophobic in nature (4,9,10). The opposite end of
the cage, bearing a high concentration of negative charge,
is likely to be associated with a polar medium, i.e.,
protein (4).
TBPS and some other BPs are noncompetitive GABA

antagonists ofmuch higher potency than PTX but acting
in the same way (14-16), almost certainly at the chloride
channel. An attempt to use n-propylbicyclophosphate
[mouse IP LD,, = 0.38 mg/kg (4)] as a 'H radioligand
with rat brain membranes was partially successful but
the displacement potency of various BPs did not cor-
relate with their toxicity (17). The most toxic BPs are
TBPS and its phosphite and phosphate analogs (LD,(,

- 0.04 mg/kg) (4). TBPS is synthesized by addition of
sulfur to the phosphite (4) and the use of 35S gives
[3S]TBPS of high specific activity (> 60 Ci/mmole)
(NEG-049 of New England Nuclear). [35S]TBPS ap-
pears to be the best BP radioligand since it is easily
synthesized at adequate specific activity and in binding
assays it is 4-fold more potent than its oxygen analog
(Fig. 3) (18). There are some differences but many sim-
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FIGURE 2. Relation of hydrophobicity and steric factors of the R-

substituent to mammalian toxicity of bicyclophosphates. r is the
hydrophobicity parameter and S the number of substituents at
the cs- or ,B-atom of the exocyclic R-substituent (10).
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FIGURE 3. Relation of inhibitory potency at TBPS receptor to mam-

malian toxicity of bicyclophosphorus esters. [r5S]TBPS receptor
binding data are based on rat brain EDTA/water-dialyzed mem-
branes (18) and toxicity values on IP treated mice (4).

ilarities in the binding characteristics of [35S]TBPS and
[3H]DHP (18) and PTX competitively inhibits [35S]TBPS
binding (19). In general, [35S]TBPS is preferred over
[3H]DHP as a radioligand for the PTX site because of
much greater affinity and signal-to-noise ratio (18). In
addition, the relative potencies of six BPs in displacing
[35S]TBPS from its binding site are correlated with their
mouse IP toxicity (Fig. 3). It is therefore appropriate
to detail optimal conditions for [35S]TBPS receptor prep-
aration and assay and to consider interactions of other
neuroactive agents with this site.

[35S]TBPS Receptor Binding Assays
Preparation of Rat Brain Synaptic
Membranes
The P2 (mitochondrial) fraction from rat brain ho-

mogenate is an appropriate source of synaptic mem-

s

notes

0

II

124



INSECTICIDE INTERACTIONS WITH BRAIN-SPECIFIC RECEPTTOR

Table 1. Characteristics of [tS]TBPS binding to rat brain synaptic
membranes prepared by two techniques.

'Iype of preparation
EDTA/water-

Characteristic Fresh dialyzed
Protein yield, mg/g brain wt 13 ± 2 2.5-4.3
[35S]TBPS specific binding parametersa

Specific binding, % of total' 84-89 85-90
Bmax, pmole/mg protein 1.7-2.5 5.6-7.3
Kd, nM 61-80 61-74
IC50 of inhibitors, ,uMb
TBPS 0.078 0.062
PTX 0.76 0.34
a-Endosulfan 0.10 0.11
GABA - 10 0.89
Diazepam -10 -10

Effect of 10 nM R 5135b
Stimulation of binding Yes Yesc
Reverses inhibition by:
Noncompetitive inhibitors Yes Yesc
Competitive inhibitors No Noc

Stable to freezing No Yes
a Standard assays in 5 mM Na phosphate/200 mM NaCl (pH 7) buffer

for fresh membranes (19) and in 5 mM Tris-HCl/1 mM EDTA/200 mM
KBr (pH 7.5) buffer for dialyzed membranes (22), both at 37°C. Assays
of the latter preparations at 25°C gave Kd -20 nM and IC,,, values of
0.017, 0.19, and 0.34 ,M for TBPS, PTX, and GABA, respectively
(18).

b Determined at 2 pmole ['5S]TBPS assay.
'See Squires et al. (18).

branes for [35S]TBPS binding assays. Two of several
general methods used for membrane preparation are
detailed here. One utilizes fresh P2 membranes in Na
phosphate/NaCl buffer (19-21) and the other involves
treatment of the P2 membranes with ethylenedia-
minetetraacetic acid (EDTA) and extensive dialysis
against distilled water (18,22). The characteristics ofthe
preparations are compared in Table 1.
Fresh Membrane Preparations. Whole brains (-1.7

g) from male albino rats (-175 g; sacrificed by decapi-
tation) are quickly placed in 0.32 M sucrose at 4°C and
then gently homogenized (six passes at - 2000 rpm) in
10 volumes of fresh sucrose solution using a 55-mL Te-
flon-glass tissue grinder. The supernatant from cen-
trifugation (10 min, 1000g, 4°C) is carefully removed
with a cold pipette and centrifuged a second time (20
min, 9000g) to sediment the P2 fraction. All of this su-
pernatant is carefully removed as above and the P2 pel-
let is immediately resuspended in about five volumes of
5 mM Na phosphate/200 mM NaCl, pH 7.0, buffer (6)
at 4°C with homogenization (four gentle passes) in a 10-
mL tissue grinder with care to avoid aerating the sus-
pension. The protein content is then quantitated (23)
and adjusted to 2 mg/mL by addition of the same buffer.
For homogeneity, the tube is inverted several times
prior to the removal of aliquots. This fresh membrane
preparation is held on ice and must be used within a
few hours due to gradual loss ofTBPS binding capacity;
the activity is not retained on freezing and thawing.
EDTAIWater-Dialyzed Membrane Prepara-

tions. Rat brains are homogenized in 50 volumes of 1

mM EDTA at 4°C and the homogenate is centrifuged
as above to obtain the P2 fraction which is resuspended
in ice-cold 1 mM EDTA (50 times the original wet tissue
weight). The P2 suspension is dialyzed three successive
times (1-2 hr each) against 20 volumes of distilled water
at 4°C and then centrifuged (30 min, 25,000g) to obtain
a pellet that is either suspended in assay buffer for
immediate use or frozen for storage at -80°C. The frozen
pellets are resuspended as above but in 5 mM Tris-HCl/
200 mM KBr (pH 7.5) buffer at 4°C, and the protein
content is determined and adjusted to 0.5 mg/mL. The
frozen pellets retain their TBPS binding capacity for
several months but when thawed their assay suspension
has similar instability to that of the fresh membrane
preparation.

Assay of [35S]TBPS Binding and
Displacement by Direct Inhibitors
The assay involves a simple, rapid and highly repro-

ducible filtration technique (19,22). A stock solution of
radioligand is freshly prepared for each experiment by
adding [355]TBPS (40 pmole in 1-5 uLL ethanol) to 10 mL
of 5 mM Na phosphate/200 mM NaCl (pH 7) buffer (for
fresh membrane assay) or of 5 mM Tris-HCI/200 mM
KBr (pH 7.5) buffer (for dialyzed membrane assay). An
0.5-mL aliquot containing 2 pmole [35S]TBPS is then
added to a glass incubation vial (20-mL) followed by
addition of dimethyl sulfoxide (DMSO) (5 piL; an amount
which has no effect on [35S]TBPS binding) alone or con-
taining a candidate inhibitor. After 2 or 3 min at 37°C
for temperature equilibration, the assays involve ad-
dition of 0.5 mL cold membrane preparation (1 or 0.25
mg protein for fresh or EDTA/water-dialyzed prepa-
ration, respectively) and shaking at medium speed for
30 min at 37°C in a Dubnoff Metabolic Shaking Incubator
(GCA Corporation, Chicago, IL). A variation of this
procedure uses EDTA/water-dialyzed membranes in 5
mM Tris-HCl/200 mM KBr (pH 7.5) buffer and incu-
bation in 2 mL total volume for 90-100 min at 25°C (18).

Bound [35S]TBPS is determined by quickly diluting
each sample with 5 mL ice-cold buffer and filtration
through prewetted glass microfiber filters (2.4 cm di-
ameter, GF/C, Whatman Inc., Clifton, NJ) with a fil-
tration manifold (VFM1, Amicon Corp., Danvers, MA)
and an aspirator pump and regulator (K-7048, Cole-
Parmer Instrument Co., Chicago, IL) operating at con-
stant vacuum (63.5 cm Hg). The filters are rapidly rinsed
(5-7 sec total time) with two additional 5-mL portions
of ice-cold buffer, then transferred to glass scintillation
vials containing 10 mL of 2,5-diphenyloxazole (0.55% w/v)
in toluene-methylcellosolve (2:1) mixture for direct liq-
uid scintillation counting; it is not necessary to use a
tissue solubilizer. Total and nonspecific [t5S]TBPS bind-
ing are determined in the absence and presence of 2
nmole unlabeled TBPS, respectively, added initially in
5 p,L DMSO. Specific binding is the difference in total
and nonspecific binding.
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Median inhibitory concentrations (IC50 values) are
taken directly from Hill plots (24), log (B/Bi - 1) versus
log [inhibitor], where B0 and Bi are specific [35S]TBPS
binding in the absence and in the presence, respectively,
of a particular concentration of inhibitor. Confidence
limits for IC50 values are calculated by computer-as-
sisted linear regression analysis of Hill plot data. TBPS
binding parameters (Kd and Bmax) are determined by
Scatchard analysis (25) of binding at different ligand
concentrations (generally between 2 and 250 nM). The
[3S]TBPS concentration is varied by dilution with un-
labeled TBPS.

Coupled Microsomal MIetabolism/
[35S]TBPS Binding Assay

Fortification ofthe standard TBPS binding assay with
rat liver microsomes and reduced nicotinamide-adenine
dinucleotide phosphate (NADPH) allows determination
of the effect of microsomal metabolism on the potency
of inhibitors in displacing [35S]TBPS binding (20,21).
The standard pre-incubation mixture consists of 2 pmole
[35S]TBPS in 0.2 mL 5 mM Na phosphate/200 mM NaCl
(pH 7) buffer, 0.1 mL of the same buffer containing 0
or 2 ,umole NADPH (control and oxidase systems, re-
spectively), rat liver microsomes (0.1 mg protein) in 0.2
mL 50 mM Na phosphate (pH 7.4) buffer, and 5 puL
DMSO with or without inhibitor. The assay is initiated
by addition of 0.5 mL fresh membrane suspension and
performed exactly as described above. Samples con-
taining microsomes and NADPH have about 15% higher
overall binding compared to microsomes without
NADPH. The absolute increase in total and in nonspe-
cific binding are equivalent; specific binding is not sig-
nificantly altered by the oxidase system. Appropriate
corrections for the NADPH-dependent increased non-
specific binding are made with suitable controls, i.e.,
total and nonspecific binding determined in both the
presence and absence of added NADPH. The NADPH-
enhanced nonspecific binding probably results from
TBPS desulfuration yielding a protein-bound hydrodi-
sulfide (26) (Fig. 4). This is a fortuitous radioligand for
this type of activation assay, since it undergoes specific
binding in brain but not liver (18), and bicyclophospho-
rothionates are unusually resistant to microsomal oxi-
dative desulfuration (9).

Assay of in Vivo Inhibition of [35S]TBPS
Binding Site

Rats as above are treated intravenously with DMSO
(50 pL) alone (control) or containing a toxicant or drug.
At an appropriate stage of poisoning or time after treat-
ment, the rats are decapitated, their brains are rapidly
excised, and fresh membrane preparations are assayed
as previously described for specific [35S]TBPS binding,
comparing the treated and control animals for the level
of specific binding. The fresh membrane preparation
technique is ideally suited for this type of assay.

Polychlorocycloalkane Insecticides
Lindane, toxaphene and the chlorinated cyclodienes

(see Figs. 5-7 for type structures) have a synaptic site
of action in the central nervous system of mammals and
cause hypersensitivity and tonic and clonic convulsions.
These signs of poisoning are distinct from those ob-
served for DDT (27,28).

Hexachlorocyclohexanes and
Polychlorobornanes

Hexachlorocyclohexane insecticide (also known as

benzene hexachloride or BHC) consists of four major
isomers (ox, I, y, and 6), of which only the -y isomer or

, -NH
0

microsomes O\ cytochromeI<\Z=*S NADPH /P=O + P-450 CHCH2S-SH

FIGURE 4. Possible oxidative metabolism of [3S]TBPS to generate
35S-bound microsomal cytochrome P-450.
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FIGURE 6. Relation of inhibitory potency at TBPS receptor to mam-
malian toxicity of hexachlorocyclohexanes and polychlorobor-
nanes. ["S]TBPS receptor binding data are based on fresh rat
brain membranes and toxicity values on IP treated mice (20). The
toxaphene components are assayed in mice pretreated with pi-
peronyl butoxide (31).
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lindane is highly insecticidal; this isomer is responsible
for the acute mammalian toxicity of the technical mix-
ture (29). Lindane is also the only isomer effective in
displacing [35S]TBPS binding (20).
Toxaphene, from chlorination of camphene, is a complex

mixture consisting mostly of isomeric polychlorobornanes
(Fig. 5) of which heptachlorobornane B, 8-Cl-B and par-

ticularly 9-Cl-B account for most of the toxicity to mice,
goldfish and houseflies (30,31). These three hepta- and
octachlorobornanes also account for the potency of tox-
aphene as an inhibitor of [35S]TBPS binding (20). This
finding provides strong evidence for the toxicological
relevance of the [35S]TBPS binding assay since it rec-

ognizes B and 9-Cl-B as the most potent and toxic of
at least 29 heptachlorobornanes and 64 octachlorobor-
nanes, respectively.
The hexachlorocyclohexanes and polychlorobornanes

follow the same trend in correlating potency for
[3S]TBPS receptor inhibition with mouse IP toxicity
(Fig. 6). The data used for the polychlorobornanes are

isodrin
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FIGURE 7. Oxidative bioactivation of isodrin and endrin. ["5S]TBPS
receptor binding data (IC50, ,uM) are based on fresh rat brain
membranes and toxicity values (LD50, mg/kg) on orally treated
rats (20,36).

from mice pretreated with the synergist piperonyl but-
oxide. This cytochrome P-450 inhibitor increases the
toxicity of B by 8-fold without changing the toxicity of
the five other polychlorobornanes or mixtures examined
(31). Interestingly, B is also the only one of these ma-

terials detoxified in the coupled receptor/microsome
system (Table 2) (20,21).

Chlorinated Cyclodienes
There are six major cyclodiene insecticides of current

or historical interest, i.e., aldrin, chlordane, dieldrin,
endosulfan, endrin (Fig. 7) and heptachlor. The struc-
ture-toxicity relationships, photochemistry and meta-
bolic fate of the cyclodienes are well defined (27,32,33).
Some of them undergo metabolism to form epoxides and
photolysis to yield epoxides and bridged photoisomers,
e.g., heptachlor is converted to heptachlor epoxide and
each in turn undergoes a photobridging reaction (27) to
photoheptachlor and photoheptachlor epoxide, respec-
tively. Some of the parent cyclodienes and metabolites,
e.g., isobenzan and 12-ketoendrin, are highly toxic con-
vulsants. Heptachlor epoxide and lindane inhibit both
GABA-induced chloride permeability in cockroach coxal
muscle and [3H]DHP specific binding to rat brain syn-
aptosomes (34,35).
The isomer specificity for inhibitor potency at the

TBPS receptor is the same as that for acute mammalian
toxicity. This finding is based on the following eight
pairs of compounds (the least potent isomer is given
first): aldrin vs. isodrin, dieldrin vs. endrin, f- vs. a-

endosulfan, trans- vs. cis-chlordane, photo-trans- vs.
photo-cis-chlordane, heptachlor vs. photoheptachlor,
heptachlor epoxide vs. photoheptachlor epoxide, and
anti-12- vs. syn-12-hydroxyendrin. There is also gen-
eral agreement between inhibitory potency and toxicity
when the cyclodienes are subdivided on the basis of
elemental composition, i.e., those containing carbon,
hydrogen, and chlorine but no oxygen, and the chlori-
nated hydrocarbons with oxygen or with both oxygen
and sulfur (Table 3); attempts at more precise corre-

Table 2. Effect of microsomal metabolism on inhibitory potency of polychlorocycloalkane insecticides at TBPS receptor of fresh
rat brain membranes.

Presumed microsomal Microsome/receptor aSsay,
Polychlorocycloalkanea metabolism product % inhibition with substrateb

Compound ICo, VM Compound IC50,,LM Control Oxidase
Activation

Aldrin 8.7 Dieldrin 1.4 26 ± 3 53 ± 4
trans-Chlordane 26 Oxychlordane 0.93 26 ± 2 46 ± 4
Heptachlor 7.5 Heptachlor epoxide 0.98 30 ± 9 52 ± 12
Isodrin 1.4 Endrin 0.22 30 ± 2 69 ± 2
anti-12-Hydroxyendrin 4.4 12-Ketoendrin 0.036 22 ± 5 31 ± 6
3-Endosulfan 1.5 Endosulfan sulfate 0.15 27 ± 4 64 ± 5

Detoxification
Heptachlorobornane B 0.17 Oxidized 40 + 2 9 ± 5
Endosulfan sulfate 0.15 Hydrolyzed 20 + 4 < 5

aOther compounds indicated in Fig. 6 and Table 3 are neither activated nor detoxified under these assay conditions except for toxaphene which
undergoes marginal activation.
bAssays without added NADPH (control) or in the presence of 2 ,umole NADPH (oxidase). Means and standard errors based on six determina-

tions in at least two experiments.
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lations are not appropriate since the mammalian toxicity
data used are literature values from a variety of studies
and seven of the cyclodienes undergo metabolic acti-
vation or detoxification as described below (20).
Four cyclodienes lacking oxygen undergo in vivo

epoxidation to products of enhanced potency in inhib-
iting the binding of 113S]TBPS (Table 2). The known
metabolic conversions of anti-12-hydroxyendrin and 13-
endosulfan to 12-ketoendrin and endosulfan sulfate, re-
spectively, are metabolic activation reactions relative
to inhibitory potency at the [35S]TBPS receptor. These
six cyclodienes, and only these six of 22 studied, are
converted to more potent inhibitors (by a factor of 2-
to 5-fold) in the microsome/NADPH system, verifying
the importance of epoxidation in activating the first four
compounds and oxidation for the latter two cyclodienes.
Endosulfan sulfate, on the other hand, is detoxified in
the coupled receptor/microsome system (Table 2).
Comparative data on in vitro inhibitory potency and

in vivo toxicity help define which reactions in a meta-
bolic pathway are critical bioactivation steps, as illus-
trated with isodrin and endrin in Figure 7. The toxicity
data in themselves are insufficient to define whether or
not the epoxidation of isodrin to endrin is an activation
step (27,36), but with the receptor data (20) this point
becomes clear. Hydroxylation of endrin at the 12-po-
sition is either an activation or a detoxification step
depending on whether the syn or anti metabolite is
formed, respectively. Final oxidation of the anti-12-hy-
droxy compound is slow but a distinct activation step
whereas oxidation of syn-12-hydroxyendrin provides
only a small toxicity increase.

Dieldrin has sufficient affinity to remain at the specific
site in mammalian brain during membrane preparation

Table 3. Relation of inhibitory potency at TBPS receptor to
mammalian toxicity of chlorinated cyclodienes. [~S]TBPS receptor
binding data are based on fresh rat brain membranes and toxicity
values primarily on orally treated rats with supplemental studies

involving orally or IP-treated mice.

Compounds IC,,, JIM LD,,, mg/kg

Containing no oxygen
Chlordene, trans-chiordane, >10 >500

photo-trans-chlordane
Aldrin, cis-chlordane, 2-9 38-600

heptaclor
Isodrin, photo-cis-chlor- 0.2-1.4 12-20

dane, photoheptachlor
Containing oxygen

Dieldrin, heptachlor epox- 1->10 >16-1250
ide, oxychlordane, aldrin-
trans-diol, anti-12-
hydroxyendrin

Endrin, isobenzan, photo- 0.04-0.3 1-~20
heptachlor epoxide, 12-
ketoendrin, syn-12-
hydroxyendrin

Containing oxygen and sulfur
r3-Endosulfan 1.5 240
ca-Endosulfan, endosulfan 0.1-0.2 76

sulfate

T'able 4. TBPS receptor inhibition by intravenously administered
dieldrin in rats.

[IS]TBPS specific binding
Dieldrin, fmole/mg
mg/kg Convulsions'a proteinb % of control
0 None 53 ±3 100
10 Moderate 35 ± 6 67
25 Severe 12 ±2 22

'Rats sacrificed 7 min after administration of DMS0 only or
dieldrin in DMS0.
bN = 5 for control and N = 3 for each dieldrin dose.

and assay. Thus, specific TBPS binding is reduced in a
dose-dependent manner for preparations from rats re-
ceiving acutely toxic intravenous doses of dieldrin (Ta-
ble 4) (20,21).
Three other types of chlorinated hydrocarbon insec-

ticides, DDT, mirex and kepone, act by different mech-
anisms than the cyclodienes, lindane and toxaphene and
their IC,0 values in the 135S]TBPS assay are > 10 [LM
alone or with the microsome-NADPH system.

Pyrethroid Insecticides
The pyrethroids include the most potent and most

selective insecticides. Those of the highest potency are
esters of a-cyano-3-phenoxybenzyl alcohol, e.g., cyper-
methrin (Fig. 8), deltamethrin (the dibromo analog of

8 CYPERMETHRIN ISOMERS

Cis5 R S
trans R S
cis S R

R R
S S

trans S R
R R
S S

Insect

Tox.
Mouse Recep.
Tox. Inhib.
100 100
54 43
o 0
0 0
o o
o 0
o 0
o 0

4 FENVALERATE ISOMERS

insect Mouse Recep.
II Tox. Tox. Inhib.

I ++ 57 4
R R - 0 0
R S - 0 0
S R - 0 0

FIGURE 8. Relation of inhibitory potency at TBPS receptor to mam-
malian toxicity of a-cyano-3-phenoxybenzyl pyrethroids. ['S]TBPS
receptor binding data are based on fresh rat brain membranes and
toxicity values on intracerebrally treated mice. The potency of
[1R,cis,aS]cypermethrin is normalized to 100 (19). Structures of
the most potent isomers are shown. Other tabulated isomers in-
volve inversion of configuration at the carbon atoms designated
by arrows.
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cypermethrin) and fenvalerate (Fig. 8). The cyano sub-
stituent not only increases the potency but apparently
also changes the mode of action, referred to as type I
for the early or noncyano compounds and type II for
the cyano pyrethroids (37). The primary type II poi-
soning action appears to be in the central nervous sys-
tem of mammals whereas the type I action has a greater
peripheral component (37). Diazepam is more effective
in delaying the type II than the type I poisoning signs
(38,39). There are some similarities between the cyano
pyrethroids and PTX in their poisoning signs and di-
azepam effects in cockroaches and intracerebrally treated
mice but not in frogs (37-39). Deltamethrin but not its
nontoxic aoR epimer inhibits the binding of [3H]DHP to
rat brain synaptosomes (6). These findings suggest that,
in contrast to the early pyrethroids which disrupt so-
dium channels, the a-cyano pyrethroids may act in part
within the GABA receptor-ionophore complex.

Studies with 37 pyrethroids, 16 giving the type I and
21 the type II poisoning syndrome, establish an absolute
agreement, i.e., no false positives or negatives, between
the potency in inhibiting [35S]TBPS binding and the
mouse intracerebral toxicity (19). Three relationships
are of particular interest. First, all toxic cyano com-
pounds but none of their nontoxic stereoisomers are
inhibitors of [35S]TBPS binding (Fig. 8). Second, the
cis-cyclopropanecarboxylates are more potent than the
trans-cyclopropanecarboxylates as both toxicants and
inhibitors, establishing that this specificity occurs at
least in part at the receptor level (Fig. 8). Third, all
noncyano pyrethroids are much less potent or inactive,
indicating some differences in their mode of action, in
agreement with their symptomology. The types I and
II actions have the same stereochemical requirements
for the acid moieties (Fig. 8), yet different target sites
appear to be involved at least in the mammalian brain,

Table 5. Inhibitory potency of GABA-mimetics, t-butyl-
bicycloorthocarboxylates and other neuroactive compounds at
TBPS receptor of rat brain EDTA/water-dialyzed membranes.

Compounda IC50,FM
GABA-mimetics

Muscimol 0.059
3-Aminopropanesulfonic acid 0.24
Dihydromuscimol 0.26
GABA 0.34
trans-4-Aminocrotonic acid 0.73
Isoguvacine 0.93

t-Butylbicycloorthocarboxylates, (CH3)3CC(CH20)3CR
R = phenyl 0.035
R = butyl 0.059
R = hydrogen 8.5

Other convulsants
Anisatin 0.074
PTX 0.19
TETS 0.82

Pyrazolopyridines, barbiturates and benzodiazepines
Cartazolate 0.19
Etazolate 0.48
(+ )-Etomidate 2.8

Ro 5-3636 and 5-4556 - 10
aThe IC50 for ethanol is 212 mM.

suggesting that the relevant types I and II receptors
have some common topographic features.

Other Neuroactive Compounds
GABA and several GABA-mimetics inhibit TBPS

binding with muscimol being the most potent (18) (Table
5). The interaction of GABA-mimetics with the TBPS
receptor is fundamentally different from that ofthe cage
convulsants since they facilitate rather than inhibit GA-
BAergic transmission.

Other convulsants displacing specific [35S]TBPS bind-
ing are as follows: t-butylbicycloorthocarboxylates (18)
(Table 5), a series which has the same optimal 4-sub-
stituents as in the phosphate series (4); the candidate
rodenticides tetramethylenedisulfotetramine (TETS)
and p-chlorophenylsilatrane (18,21,22); the insecticidal
natural products pipercide (an isobutylamide) and Iver-
mectin (an avermectin) (21,22); the polycyclic bislactone
anisatin from seeds of Illicium anisatum L. (18,22).
Some pyrazolopyridines, barbiturates, benzodiaze-

pines (BDZs), and ethanol also inhibit TBPS binding
(18) (Table 5) but are generally less potent than the
GABA-mimetics and convulsants. The in vitro potencies
of the BDZs in displacing TBPS are generally not di-
rectly related to their in vivo pharmacological effects.

[35S]TBPS as Neuropharmacological
Probe for the GABA Receptor-
lonophore Complex
Compounds from every class of known GABAergic

mechanisms inhibit or enhance the binding of ['S]TBPS,
making this radioligand an excellent probe for studies
on mode of action and structure-activity relationships,
and more generally the interactions between the various
components of the GABA receptor-ionophore complex.
Specific binding of [35S]TBPS or [3H]n-propylbicyclo-
phosphate is enhanced by the GABA receptor antago-
nists bicuculline and R 5135 (17,21) and by the convulsant
benzodiazepine Ro 5-4864 (21) which apparently inter-
acts with a novel class of BDZ receptors (40). The re-

maining compounds, which inhibit TBPS binding with
IC50 values ranging from 20 nM to > 10 FM, can be
divided into two classes-those which are noncompe-
titive or indirect inhibitors and those which are com-
petitive or direct inhibitors. The nature of the inhibition

Table 6. Properties of various inhibitors in displacement of
specific [35S]TBPS binding to fresh rat brain membranes.

rlype of R 5135
Inhibitor inhibition reversal
GABA Noncompetitive Complete
[1R,cis,oaS]-Cypermethrin Noncompetitive or mixed Partial
PTX Competitive None
Lindane Competitive None
8-Cl-B Competitive None
12-Ketoendrin Competitive None
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is defined by Scatchard analyses with supplemental in-
formation based on the reversibility of the inhibition by
R 5135 (Table 6).

Noncompetitive or Indirect Inhibitors
GABA shows purely noncompetitive behavior upon

Scatchard analysis (21), and the inhibition ofTBPS bind-
ing by GABA and GABA-mimetics is completely re-
versed by 10 nM R 5135 (18). It therefore appears that
GABA and GABA-mimetics inhibit TBPS binding
through opening (stimulating) the chloride channel and
maintaining it in a configuration which distorts the TBPS
binding site. This is consistent with the R 5135 effect
whereby its displacement of GABA (41) returns the
chloride channel to its closed (unstimulated) state, thus
restoring the TBPS binding site.
Most BDZs and barbiturates enhance GABAergic

synaptic transmission per se (42), and their inhibition
ofTBPS binding is reversed by R 5135 (18). These com-
pounds appear to be noncompetitive inhibitors acting in
a manner similar to GABA-mimetics, but at a distinct
binding site, e.g., the BDZ receptors for the BDZs.
The cyanophenoxybenzyl pyrethroids inhibit

[3S]TBPS binding maximally by 60 to 70% (Fig. 9) (19,21)
and appear to be indirect inhibitors, since they give

100

C (I~~~~~~~~~~~~~~~OR,clis,aS)-
cypermethrin

UE-

'c^o 8-C
0~~~~~~~~
~50 9-CI-

2-ketoendrIn PtX
2525

indane

CC

0.01 0.1 10 100
Inhibitor Concentration (psM)

FIGURE 9. Displacement of specific [3S]TBPS binding to rat brain
membranes by picrotoxinin and a representative compound from
each of four classes of insecticidal inhibitors (20,21). Structures
for the inhibitors are given in Figs. 1 and 6-8.

noncompetitive or mixed-type Scatchard plots (Fig. 10)
and only partial reversal of the inhibition by R 5135
(Table 6) (19). Unlike GABA, however, these com-
pounds block rather than enhance GABA-stimulated
chloride permeability (16), making it likely that their
inhibition of TBPS binding is through an interaction
with a closely associated yet distinct binding site, pos-
sibly involving an allosteric mechanism.

Competitive or Direct Inhibitors
PTX, lindane, a mixture of 8- and 9-Cl-B and 12-

ketoendrin give 100% maximum inhibition of [35S]TBPS
binding (Fig. 9) (20,21). Scatchard analyses indicate that
heptachlor epoxide (Fig. 10) (21) and lindane, 8-Cl-B
and 12-ketoendrin (Table 6) (20) are competitive inhib-
itors based on increasing the K(1 without changing the
Bmax for [35S]TBPS binding (20,21). Inhibition by these
polychlorocycloalkanes is not reversed by R 5135 (Table
6) (20,21). PTX, lindane and heptachlor epoxide inhibit
chloride permeability (1,35), so their actions probably
result from direct interaction with the chloride ionop-
hore-associated TBPS receptor (20,21) or with an allo-
steric hydrophobic regulatory site (7).
Many cage convulsants with defined three-dimen-

sional structures are potent inhibitors ofTBPS binding,
e.g., the PTX analogs, bicyclophosphorus and bicy-
cloorthocarboxylic acid esters, and polychlorocycloal-
kane insecticides. These compounds are excellent probes
for characterization of the properties and topography
of the TBPS binding site and its relationship to the
chloride ionophore.

Health and Environmental
Relevance
The [35S]TBPS receptor assay has helped to elucidate

or verify the mode of action of several natural products
and xenobiotics including a variety of toxicants and im-
portant insecticides. Ethylbicyclophosphate is the toxic
principle (43) in the smoke produced on burning non-
commercial fire-retarded polyurethane foams based on

B B

FIGURE 10. Scatchard plots of specific [35S]TBPS binding to rat brain membranes in the presence of (A) 0.5 ,uM picrotoxinin, (B) 1 ,uM
heptachlor epoxide, and (C) 5 p.M (lR,cis aS)-cypermethrin (19-21). B and F are bound and free [5S]TBPS. K, is given as nM and B,,*.
as pmole/mg protein.
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a trimethylolpropane-initiated short-chain polyol and a
phosphate flame retardant (44). Almost three billion
pounds of hexachlorocyclohexanes, polychlorobornanes,
and chlorinated cyclodienes have been applied to crops
and soils over the past 40 years (20,27). The cyano-
phenoxybenzyl pyrethroids are the major new insecti-
cides of the past decade and are much more potent than
earlier analogs (45). Our initial investigation on bicy-
clophosphorus compounds (43) served as a basis for new
ways to examine polychlorocycloalkanes, a-cyano py-
rethroids, and other diverse groups of neuroactive agents
of health and environmental relevance. "When we try
to pick out anything by itself, we find it hitched to every-
thing else in the universe" (46).
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